Nonparametric Inference for Periodic Sequences

نویسندگان

  • Ying Sun
  • Jeffrey D. Hart
  • Marc G. Genton
چکیده

This article proposes a nonparametric method for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a “leave-out-one-cycle” version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a “virtually” consistent estimator of integer periods. This estimator is investigated both theoretically and by simulation. We also propose a nonparametric test of the null hypothesis that the data have constant mean against the alternative that the sequence of means is periodic. Finally, our methodology is demonstrated on three well-known time series: the sunspots and lynx trapping data, and the El Niño series of sea surface temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

On the Accuracy of Inference on Heavy-tailed Distributions∗

This paper suggests a simple method of deriving nonparametric lower bounds of the accuracy of statistical inference on heavy-tailed distributions. We present lower bounds of the mean squared error of the tail index, the tail constant, and extreme quantiles estimators. The results show that the normalizing sequences of robust estimators must depend in a specific way on the tail index and the tai...

متن کامل

Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies.

Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly...

متن کامل

Gaussian Process-Based Bayesian Nonparametric Inference of Population Trajectories from Gene Genealogies

Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly...

متن کامل

A Nonparametric Bayesian Approach for Haplotype Reconstruction from Single and Multi-Population Data

Uncovering the haplotypes of single nucleotide polymorphisms and their population demography is essential for many biological and medical applications. Methods for haplotype inference developed thus far –including those based on approximate coalescence, finite mixtures, and maximal parsimony– often bypass issues such as unknown complexity of haplotype-space and demographic structures underlying...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Technometrics

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2012